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Abstract. Conformally invariant boundary conditions for minimal models on a cylinder are
classified by pairs of Lie algebrdd, G) of ADE type. For each model, we consider the action

of its (discrete) symmetry group on the boundary conditions. We find that the invariant ones
correspond to nodes in the product grapk G that are fixed by some automorphism. We proceed

to determine the charges of the fields in the various Hilbert spaces, but, in a general minimal model,
many consistent solutions occur. In the unitary moddisA), we show that there is a unique
solution with the property that the ground state in each sector of boundary conditions is invariant
under the symmetry group. In contrast, a solution with this property does not exist in the unitary
models of the seriegA, D) and (A, Eg). A tempting interpretation of this fact is that a certain
(large) number of invariant boundary conditions have unphysical (negative) classical boundary
Boltzmann weights. We give a tentative characterization of the problematic boundary conditions.

1. Introduction

It has been an extremely fruitful idea to study a conformal field theory by putting it on various
surfaces, with or without boundaries. Apart from the sphere, which was considered first, prime
examples of non-trivial geometries include the torus [1] and the cylinder [2, 3]. They serve to
probe different facets of a given conformal theory. However, the data specific to these surfaces
are inextricably related to each other, and this fact provides very stringent constraints on the
theory itself, allowing one, for example, to determine its field content.

For minimal conformal theories, the problem on the torus for single-valued fields has been
resolved in [4]: consistent models have a periodic partition function that can be associated in
a unique way with a paifA, G) of simple Lie algebras of ADE type.

The solution of the analogous problem for the cylinder is much more recent, although
early calculations in either specific models or with specific boundary conditions were carried
outin[2,3,5]. The recent discovery in [6] of a new conformally invariant boundary condition
in the three-state Potts model triggered a renewal of interest in the problem. For minimal
models, its solution was given in [7, 8], and shown to be encoded in the same Dynkin graphs
that specify the torus partition function.

When a model has a symmetry, necessarily discrete in this context, fields can be multiple-
valued on the torus, so that non-periodic sectors exist. Furthermore, the fields transform under
the symmetry group, and, upon diagonalization, can be assigned charges. All this information
is encoded in frustrated partition functions, covariant under the modular group of the torus,
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a fact that can be used to, first, detect the presence of a symmetry, and then to compute the
various patrtition functions [9, 10].

In this paper, we address the question of the action of the symmetry group on the cylinder
partition functions for the minimal models. We show how the symmetry group acts on the
boundary conditions, and identify the invariant (or symmetric) ones. We then study the charge
assignments of the fields that occur in the presence of those boundary conditions.

Section 2is areminder about the minimal conformal models on atorus and on acylinder. In
section 3, we discuss the action of the symmetry group on the conformally invariant boundary
conditions, which is then used in section 4 to compute frustrated partition functions on a
cylinder, or equivalently the charge assignment of the boundary fields. Section 5 contains
explicit formulae and computational details of a particular assignment. Its uniqueness (in fact
non-uniqueness) is examined in section 6, from which we conclude that, in general, a large
number of distinct charge assignments are consistent. We also derive selection rules for the
boundary fusion coefficients. We finish, in section 7, with an analysis of the unitary models
for which we propose an unambiguous charge assignment.

Section 7 contains the most interesting corollary of the previous sections. An analysis
based on the expected consequences of the Perron—Frobenius (PF) theorem fixes a unique
charge assignment in the unitaiy, A) models, which we conjecture to be the correct one.
This is in sharp contrast with the models of th, D) and (A, Eg) series. For those, there
is no consistent charge assignment that is compatible with the PF theorem, the reason being
that there is no way to ensure an invariant ground state in all sectors. Motivated by the results
obtained for the Potts model [6], we will interpret this phenomenon as the non-existence
of positive classical Boltzmann weights for some invariant boundary conditions. A simple
characterization of them suggests itself in terms of their Dynkin graph labels.

2. Minimal models

Minimal models are classified by a pdiA, G) of simply laced simple Lie algebras with
coprime Coxeter numberg,andg. One may assume thatis odd. Their periodic partition
function on a torus of modulusis a sesquilinear form in the Virasoro characters

Z(A,G) =) Mxi(Dx;(t) M eN (2.1)
ij
wherei, j are labels for Virasoro highest weight representations. They lie in the Kac table
{(r,s):1<r<p—11<s <qg—1},inwhich(r, s) and(p — r, ¢ — s) must be identified.
The connection with the Lie algebras is best brought out by writing the diagonal elemignts
as [4]

1
Z(A.G)=Z Y |x.|*+off-diagonal (2.2)
2
reExpA
sEEXpG
wherer ands run over the exponents dfandG. The full expressions of the partition functions
are given in [4].

The question of the symmetry group was first addressed in [9], and solved in [10] for the
unitary modelgp — g| = 1. The analysis can, however, be easily extended to the non-unitary
minimal models, with the following result. With the exception of the models_,, A,_1)
with p and ¢ odd, which have no symmetry at all, the other models G) have a finite
symmetry groud”, which is the group of automorphisms of the Dynkin graplGofthat is,

I'(G) = Z, exceptl’(D4) = Sz andI'(E7, Eg) = {e}.
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When a model has a symmetry group, the fields may have a non-trivial monodromy along
the two periods of the torus, transforming@& + 1) = $¢(z) andg(z + 1) = ¢ (z) for
two commutingt elements, ¢’ € I'. In the Hamiltonian formalism, this amounts to give a
Hilbert spaceH,, of states with gg-monodromy along the first period, which are then acted
on by g’ when transported along the second period. The latter action can be diagonalized,
¢'|9) = ef"2/N ), defining the charg® of the fieldg under the action of’, an element of
orderN.

The field content of{, as well as their charges can be read off from the frustrated partition
functionsZ, . (A, G). These are still sesquilinear forms but with coefficient& ig?=/I'!):

Zgg = Try, [qhom/24g o /?4g]. (2.3)

Because a modular transformation mixes the two periods, it must be accompanied by a
corresponding change of monodromies so that the net effect vanishes (for a fixedl, ga)j):

at+b
Zgg(T) = Zgagre ghgu <m> . (2.4)
All such functions are given explicitly in [10] (with a straightforward extension to the non-
unitary case). The function (2.2) correspondgte g’ = e.

On a cylinder, say of lengtlh and perimetef’, only one Virasoro algebra remains, so
that the partition function is linear rather than sesquilinear in the characters [2]. Conformally
invariantboundary conditiors g mustbe prescribed on the two boundaries, and amonodromy
conditiong must be imposed along the periodic coordinate+7) = $¢(z). Wefirstconsider
a trivial monodromyg = e.

If the time variable is defined to run along the periodic direction, the partition function is
the trace of the transfer matrix &7«s,

Zp(@) =Y nlgx() T =IiT/2L. (2.5)

The integengﬁﬂ gives the multiplicity of the primary field with Kac lab&in the Hilbert space
Ha,p-

Alternatively, one may view the time evolution as going from one boundary to the other.
In this case, the states on constant time surfaces belong to the bulk periodic Hilbertispace
and are propagated in time from one boundary statéo the othei8) (formally, also inH,).
The partition function is then

Zg 4(v) = (Ble™ o) (2.6)

with H, denoting the Hamiltonian corresponding to periodic bulk sector.

The boundary states are conformally invariant, satisfying— L_,)|«) forall n € Z [3].
The solutions to this equation are the Ishibashi states [11]: every highest weight representation
[i ® i] contains exactly one such state, which we denotg hywhile the other representations
[i ® j], fori # j, do not contain any. In the present situation, the Ishibashi states must be
taken from the spacH,, and hence are labelled By = {i : [i ® i] € H.}.

Expanding the boundary states in the basis of Ishibashi states, Y, ¢/, |i)), makes the
partition function (2.6) take the form

. -1
Zu0 = ¥ ey (7). 2.7)

ie&,

T This forces us to focus on Abelian subgroup$’ofThus, in this paper, we considgp andZ3 (sub)groups only.
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The arguments of the charactersin (2.5) and (2.7) are related by the modular transformation
T *71 under which the characters transform linearly through a unitary matiGomparing
the two formulae then yields Cardy’s equation [3]

g =Y Sijclch. (2.8)
j€é.

Relations (2.8) are overdetermined for the vectgrsand provide a means to classify
the boundary conditiongr), to compute the spectra &f, g, and in turn the surface scaling
dimensions. Such calculations were carried out in [2, 5, 6], but the general answer appeared
only very recently in [7,8]. Let 1 be the label corresponding to the vacuum representation,
namely to(r,s) = (1, 1) =(p — 1,9 — 1).

In [8], it was observed that, upon settinf = w;/@ for a set of complete and
orthonornal vectorg’, Cardy’s equation appears as an explicit diagonalization

g =) Wé%wé. 2.9)

jeé&. 2]

The matrices:’ have eigenvalues; ;/S:1 ;, and a common eigenbasis is given by the vectors
¥/ . As aresult, they satisfy the fusion rules

n'n/ = Z N[];nk. (2.10)

k

Reversing the argument, the authors of [8] conclude that-aalued representation of the
fusion algebra of dimensiol£, | provides a solution to Cardy’s equation witf)| different
boundary conditions. Whetj, = v /,/S1; is an invertible matrix, this solution yields the
maximal set of conformally invariant boundary conditions. Note that the boundary giates
are determined up to a phase, but the fact that the entri¢saoé to be positive integers leaves
only a global, unobservable, phase.

For minimal models, this was all made explicit in [7]. For the mo@&] G), it was
shown that each node in the product Dynkin diagram G, quotiented by an appropria
automorphism, defines a boundary condition and vice versa. Indeed, from (2.2), the number of
Ishibashi states in the periodic sectotds = %|Epr x EXpG]|, so that only half the nodes
can define distinct boundary conditions. We will use the variadlgsand (a;, b;) as labels
for the nodes ofA x G. The lettersA andG will denote, at the same time, the Lie algebras,
the Dynkin diagrams or the corresponding adjacency matrices.

As a result of the quotient of the product graph, the matri¢efor i = (r, s), are given
by [7]

nl(al,bl),(az,bz) = (Nr)al,az(vx)bl,bz + (Nr)al,aé‘(vs)bl,bs
= Mz b azbo) = Marby).(@3.b3)" (2.11)

In this formula, theN and theV are the fused adjacency matricesdofndG, respectively.
They are defined recursively B, = X2X,,-1 — X,u—2, With X; = 1andX, = Aif X = N,
andX, = G if X = V. Equivalently,

Nr = U,-,]_(A) Vi = Usfl(G) (212)

whereU,, (2 cosx) = sin(m + 1)x/ sinx isthemth Tchebychev polynomial of the second kind.
The automorphisniz, b) — (a*, b*) can be determined from the conditiafi® = n(»—"4-9
(necessary ifthe’ are to satisfy the fusion algebra). It yieldsandp* to be givent by the non-
trivial automorphism ofdA andG, for G # Deyen, E7, Eg, andb* = b for G = Dgyen, E7, Es.

Tt The automorphismin G thus coincides with the charge conjugation in the corresponding affine al(jebra
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Viewing the tensor productsi (A, G) = N, ® V, as the fused adjacency matrices of
A x G, the above result may be summarized by saying thas a folded fused adjacency
matrix of A x G:

g =F,4(A G)+F,;(A G). (2.13)

The eigendata for the matrices and G ensure that the matrices in (2.11) satisfy the
minimal model fusion algebra. For th&, A) models, thes; (resp. b;) labels run over the
same set as (resp.s), and the matrices’ are the fusion matrice¥’ themselves [3].

3. Symmetric boundary conditions

We now proceed to the analysis of the cylinder partition functions when there is a group of
symmetryl’. From now on, we thus takgeven, ands # E7, Eg.

The boundary states are combinations of periodic Ishibashi states, on which the action of
I" is known from the torus partition functior#, ,. This induces an action on the boundary
states which one can determine. That action must be by permutations.

For the minimal models, a boundary state corresponds to a pair of nodesrafG,

) 3.1

(a, b)) =
Dy
where they/’ form an eigenbasis for the concrete matrices in (2.11).

Let us denote by the automorphisms of the Dynkin graph Gf so that everys has
fixed points. (The automorphism of thefactor has a free action, and is used to obtain a set
of representatives under the * involution, see (2.11).) Eatias a diagonalizable action on
the eigenvectorg’.

The action ofg € I on a periodic Ishibashi state can be read off from the diagonal terms
in the frustrated partition functio, ,(A, G) [10]. These can be compactly presented as
follows. If g has ordewV, and if one writes the diagonal termsii , as

Zog=y o lxilP+-- (3.2)

ie&,

then, for a proper choice of thg’, the phase is seen to be exactly equal to the eigenvalue of
¥ under an ordeN automorphisne

Vi(a, o) =2y (a, b). (3.3)

Theo thatis induced by through the previous formula is unambiguous in the moge|s5)
if G is not Dy4: the only non-trivialg induces the only non-trivied. When theD, algebra
is involved, exactly whiclw in S arises from a set of charggs, (univocally given byZ, ,)
depends on the eigenbasis we choose. In particular, a sameZgetloérges can lead to the
three different (but conjugate) order two

It quickly follows from (3.1) and (3.3) that an ord@f-group elemenf acts on the
boundary states as an ordérautomorphisnw:

(a, b)) —> [¥(a, b)) = |(a, o (]))). (3.4)

Therefore, for any subgroup of I", they-symmetric boundary conditions correspond to the
nodes ofA x G that are fixed by a group of automorphisms of;. This set of nodes form a
graph which we call the fixed-point graph and denotetby G”.

In particular, the boundary conditions that are invariant under a group elgroemespond
to the nodes iM x G, with G° the part ofG that is fixed by the automorphisminduced
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X *——eo— e

a=1 9 22 hb=1 9 g 1 Figure 1. Fixed-point graph of an elemeptof order two
2 2 in the (Ap—1, Dg/2+1) model.

by g. As before, the pairs of nodes which are related by the * automorphism define the same
invariant boundary conditions. In the minimal models, the fixed-point diagrams that arise for
the various choices ¢f are

(Ap_1, Ay_1) . Tp—1)2 X A1

(Ap_1, Dgja+1) : Tip-1)/2 X Ayjo-1 (g°=e)

(Ap—1, Da) : Tp—1)2 X A1 g =e (3.5)
(Ap_1, Ee) Tip-12 X A2

where T(,_1,» denotes the tadpole diagram obtained by quotientiig 1 by its
automorphism *.

For instance, the fixed-point graph of an elemgrmf order two in the(A,_1, Dy/2+1)
model is graphically given by figure 1.

4. Cylinder partition functions

The consequences of a symmetry can now be pursued at the level of the partition functions. Let
us suppose that andg are two boundary conditions that are invariant under a group element
g, of orderN.

It implies that the transfer matrix &-# andg commute, and can be diagonalized in the
same basis. The effect, on the cylinder partition function, of the insertign ai a line
connecting the two boundaries is to affect each Virasoro tower witthaoot of unity, so that
the first form (2.5) becomes

Z5 (1) =Y nEy (o). (4.1)

This shows thai®’ must be related in the following way to the restrictionméfto the g-
symmetric boundary conditions: an entry:sfequal ton becomes im®’ a sum ofn Nth
roots of unity.

In the second form, the boundary st is propagated t¢3) by the Hamiltonian that
acts on the bulk sector twisted lgy so that

Z5 4 (v) = (Ble e a). (4.2)

This formula makes it clear that the states and|8) should have a projection in the twisted
Hilbert space,, and being conformally invariant, must have expansions in Ishibashi states of
the bulkg-sector, themselves labelled By = {i : [i ®i] € H,}. Settingla) = 3=, ¢ [i)),,

one obtains a Cardy equation
@i i ~(2)]
nagﬁ’ = Z S,-,jcég)fcﬂg / (4.3)
J€&

for all boundary conditions which agesymmetric.
By inspecting the torus partition functiois . (A, G) [10] (also see the next section), one

readily sees that the matricel$” are square, namely

€l = 3IA X G| =|T x G°| (4.4)
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where the factor% accounts for the identification under *. Let us also note that, since the
g-Ishibashi states form a basis for boundary states that are invariant gintteey should
themselves all be neutral for consistency. This is again easily checkedZygm

The rest of this paper is devoted to a discussion of the solutions to the Cardy equation (4.3).
We will suggest that the proper physical solution is a natural generalizatignA@ of the
two formulae (2.9) and (2.13) for'.

Our first statement is that a particular solution, compatible wite= n©, is provided,
modulo a sigrs;, by the folded fused adjacency matrices of the graph G°:

Ay = 8i[FL 4(A, G°) + FL 4. (A, G%)] 8 = +1. (4.5)

Herea = (a1, by) andp = (az, by) are pairs of nodes iA x G° (with the usual identification
under *), and the automorphism * is the same as before.

Wheng, o # e, this formula can be simplified because everyn G is a fixed point of
*. Indeed sinces is a node ofA x G7, b, is a fixed point olb. Buto and* coincide, except
for G = Deyen for which * is trivial. Thus the folding by acts ona, only, resulting in an
effective folding of theA factor onto & graph (hence the graphs (3.5)). One also checks that
the folded fused adjacency matricesigf ; are the fused adjacency matricedgf 1) 2. Thus
the matrices in (4.5) are simply proportional to the fused adjacency matrices of the fixed-point
diagram

A% = 8 Fl (T, G%) = 8;U;-1(T)ay.a,Us—1(G” by, (4.6)

The matrices (T, G?) fall short of satisfying the minimal fusion algebra, but the factors
8; can be adjusted so that th&)’ do satisfy it.

The fusion algebra of the minimal modgH(p, ¢) is polynomially generated by two
generatorss andY, which one can associate with the representativeg®P andN ™2 [12].
The other elements of the algebra are explicitly given by Tchebychev polynomials

N' = U, 1(X)Us-a(Y) 4.7)
and the generators must satisfy three relations:
Up-1(X) = Uy—1(Y) = Up—2(X) — Uy—2(Y) = 0. (4.8)

The matrices” (T, G°) have the proper form (4.7), aff,_1),» andG° do indeed satisfy
the first two relations in (4.8). This is most easily seen by verifying that all eigenvalues satisfy
the relevant equation. For instance, the eigenvalyesf 7(,_1),» are in

speQT%) = {2 cos™ i1 <modd < p— 1} (4.9)
p

and clearly satisfy/,_1(1,,) = 0.
In the same way, one computes that

Up—Z(T%) =1 (4.10)
The corresponding calculation f6t yieldst, in the same four cases as in (3.5),

G’ = A;: U, 2(G%) = (=111

A i

G° = Ay: Uppo(G°) = -1

t The adjacency matrix of1 is the number zero, so that its fused adjacency matriceSarg0) = (—1)¢~1/2 for
s odd, and 0 for even.
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where the last line refers to the modél,_1, Es) for whichg = 12. Thus, except when
G° = A; and whery = 2 mod 4, the last condition in (4.8) is not fulfilled.

Owing to the parity properties of the Tchebychev polynomiéls(—x) = (—=1)" U,, (x),
one easily sees thaY = (—1)%+1T(p_1>/2 in the first and third cases of (4.11), and
X = —T-1,2 in the second and fourth ones, together with= G, do satisfy all three
conditions and therefore generate the correct algebra.

Correspondingly, one finds that the matriéés’ = F/(X,Y) = 6, F/(T, G°) with the
following signs,

(Ap1,Ag 1)t & = (=D DED
. o (— r+l 2 —
(Ap-1, Dg41) - s = (-1 (g3 e) 4.12)
(Ap,]_, Dy) : 5, =1 (g7=e)
(Ap-1, Ep) & = (=1t

obey the minimal fusion algebra. Because of the si§inbut also because the matrices
Fi(T, G°) are not positive for # ¢ (they are, however, of constant sign), #&’ provide
Z-representationst of the minimal fusion algebra.

It remains to prove our earlier assertion that the so-defiff@tare solutions to Cardy’s
equation (4.3).

Since they satisfy the fusion algebra, &’ must have eigenvalues given by rat%s
of S matrix elements. It is not difficult to see, by looking first at the partition functlﬁps
to geté, and then by computing the ratios explicitly, that the eigenvalué&tfare precisely
the above ratios foy € &, (see next section). Thus the following diagonalization formulae
hold:

~(g)i i Si, B j

Ay = v S (4.13)
J€E Li

where the vectorg/ ¢/ form a common orthonormal eigenbasis (also common to all fused

adjacency matrices (T, G°) of the fixed-point diagram). This yields the value of the

coefficients in (4.3)

Cég)j — w(é’)] (4.14)
7

To complete the proof, it is enough to show that they are compatible with!thie the
sense that has been explained in section 3: an eniry @gual ton goes over, im®’, to a
sum ofn roots of unity, and moreovei9* = 1. One may verify that this is indeed the case.
We omit the proof here since, to a large extent, it is given in the next section.

The formulae (4.5) and (4.13) bear much resemblance to the corresponding orieeffor
which they constitute a natural extension. Like thethe matrices®”’ have a graph theoretic
description derived from that of through the action of, they satisfy the minimal fusion
algebra, and their eigenvalues are exactly labelled by th&,sehich specifies the diagonal
terms of the twisted partition functiors; .. In a sense, this sé€t can also be viewed as the
set of exponents of the fixed-point graph that serves to défie

5. More explicit formulae

We give here the computational details and the proofs that were missing in the previous section.

t Inthe case of @3 symmetry group, one might expééte?™/3)-valued representations. This is, however, excluded

by the symmetryz$ p= Zg o, (time-reversal invariance), which implies the realit
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We begin by recalling the formula giving th® matrix elements in the minimal model
M(p,q),fori = (r,s)andj = (', s"),

8 rea] L '
Sij= ] — (=D stlgin T4 i PSS (5.1)
rq p q

We examine, in turn, each of the three infinite series.

5.1. The seriegA, A)

The models(A,_1, A,_1), p odd andg even, have the symmetry grof. The invariant
boundary conditions = (a, b) are controlled by the tadpole grafl),—1),2 x A1, i.e.a runs
from1lto(p — 1)/2 andb = ¢g/2.

The frustrated partition functions are [10],

Zeo(ALA) =3 XiKegs = D KiKeges (5.2)
r.s 1<r odd<p—-1
1<s<g-1

from which it follows that the twisted Ishibashi statg$), can be labelled by
E(A,A) ={j=(m %) :1<modd < p—1}. (5.3)

(Which representativér, s) or (p — r,q — s) we take does not matter, since tiiematrix
elements are the same.)
For these values of, an easy calculation yields
S,’ i q
Sh LGy (-2 cos@> U,_1(0). (5.4)
S1j p
Sincegq is even, the numbers which appear as arguments of coincide with the set (4.9) of
eigenvalues of the incidence mattfy,_1),. A simple comparison with the matricé&”, as
computed from (4.6) and (4.12),

AN = (=1 EDY,_y(To1)U,-1(0) (5.5)

shows that the eigenvaluesi@f’’ are indeed the numbers in (5.4) fpi &,.
As mentioned before, the matricesare the fusion matricedy’ themselves [3], equal,
from (2.11), to
n' =N! Ur-1(Tez2)ayar (5.6)

(a1.9).(a2, %) (a1.9). (@2 %) =
for all odds, and identically equal to zero fereven. This then leads to

7 (&)1 = (=)D i

(@1.9).(a2.9) (@1.9).(a2.%)"

(5.7)

This equation shows clearly tha#’’ is compatible with:’ in the sense explained before.

5.2. The series4, D)

All models (A ,_1, D,/2+1), With two coprime integerg, g and p odd as before, also have a

Z, symmetry. The non-trivial group elemegiinduces the automorphismof D, .1 which
exchanges the last two nodes. Therefore, the symmetric boundary states correspond to the
nodes(a, b) of the fixed-point diagranT,_1),> x A,4/>—1, pictured in section 3, so thatis
between 1 andp — 1)/2, andb is between 1 ang/2 — 1.
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The eigenvalues of(,_1),» have been recalled earlier, while thoseAyf,,_, are well
known:

spe(tT%) = {2 cos™ i1 <modd< p— l} (5.8)
p

am’

spec¢Ay ;) = {2 cos
q

1< m even< g — 1} ) (5.9)

The frustrated (antiperiodic) partition function on the torus is (the double sums run over
[1, p—1] x[1,¢q — 1]) [10]

Zg,e(A’ D) = E |Xr,x|2 + z X:jer,q—s' (510)
r odd r odd
s even s=1+% mod 2

Thus the Kac labels of thg-Ishibashi stategj)), can be chosen in the set

EA,D)={j=@m,m):1<modd < p—11<m'even<qg—1}. (5.11)
From this, one computes
S: /
B N s /A (—2 cosw) U,_1 <—2 cosm> (5.12)
N, D q

which coincide, in view of (5.8) and (5.9), with the eigenvalues of

gy = (1, A(Te)ay,Us-1(Ag Dbyt (5.13)

The numbers in the sg¢® cos%’”'} come by pairs of opposite sign, so that the set of
ratios (5.12), for fixed, is the same whether or not there is a minus sign in the argument
of U,_;. Each individual ratio, however, differs by a facter1)***, which then leads to an
alternative solutiorf—1)**17(&),

Finally, the compatibility ofi‘® with the original matrices’ can be established. In the
sector of invariant boundary conditions, the latter read

nfx,ﬁ = Ur—l(T’%l)al.azUs—l(D%ﬂ)bl,bz (5.14)

whereby, b, are restricted to lie in [1g/2 — 1]. It is a simple matter to note the following
modular identity (same values of the indices):

Us—1(Dg+1) = Us—1(Ag_1) mod 2 (5.15)

This has the immediate consequence that

Ay = nl, , mod 2 (5.16)

o

which shows the required compatibility.

Note that all the entries of®’ are in{0, +1, —1}, and that those of’ are in{0, 1, 2},
which implies that all doubled primary fields have oppog&techarges within each pair.

Wheng = 6, i.e. for the(A,_1, D4) models,Zz invariant boundary conditions can be
investigated. They are labelled by nodes2) with a in T(,_1),2.

The Z3 frustrated partition functions on the torus are [10]

Zeo(A, D)) =Y It + Y xialten + X5l H CC. (5.17)
rodd rodd

so that the Ishibashi states in thg-twisted sector have labejs= (m, 3) for m odd between
landp — 1.
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The matricesi®” in (4.6) can be compared with the restrictionsofto the sector of
invariant boundary conditions, given Wy, _1(T(,-1)/2)a.e,Us—1(Da)22. All matrices are
identically zero fors even, while fors odd

n' = Up-1(Ti) = 78 for s=1,5

) A 5.18
n' =20, 1(Te2) A®h = — r-1(Tr1) for s=3. (5.18)

As in the Z, case, the second line shows that the doubled fields have opposite and non-zero
Z3 charge (ifw # 1 is a third root of unityw + w? = —1).

5.3. The series4, Eg)

The models(A,_1, Eg) are similar to thg A, D) models. In particular, the formula for the
matrices?®” is the same as for the, D) models (withA, »_1 replaced byA,).

A unigue feature of the models based Bg however, is that some of the fields occur
tripled in some boundary conditions (in addition to some others being doubled). One finds
that these are the fields, s) with s = 5 and 7, in the boundary conditions corresponding to
the nodega, 3), for a in T(,_1),» (With b = 3 the intersection of the three branchesrgj.

This follows from the fused adjacency matridés( Es) andUg(Es), which, when restricted
to the node$ = 3, 6 corresponding to the symmetric boundary conditions, read

Us(Ee) = Us(Es) = (g 2) (5.19)

6. Uniqueness

The boundary conditions that are invariant under a group elegeatrespond to boundary
states which have expansionsgitishibashi statest

oy =Y c®i)),. (6.1)

ie&,

The coefficients in (4.14) provide a specific solutidf’ to Cardy’s equation (4.3). As for the
n', one may raise the question of the uniqueness of this solution.

For everyg, the symmetric boundary conditions exhaustghshibashi states. It means
that every other symmetric boundary state must be a linear combination of those we already
have, and so must be one of them. However, since the boundary jgtatester Cardy’s
formula through scalar products, it is the boundary rays more than the boundary states which
matter. Thus, the basic question is whether one retains a sensible solution if one multiplies the
boundary states by phases.

Clearly, if the symmetric boundary states are multiplied by phases,—~ ¢,|«), the
matrices change accordingﬁﬁf}; — <pa<p;ﬁ£f}; , Which satisfy the minimal fusion algebra for
any choice of phases.

Whereas fog = e, the positivity ofz©" = »' forces all the phases to be equal, this is no
longer the case when# e. Since the matrices'®’ areZ valued, the only condition one has
is that the phases must be equal up to signs+ €, ¢.

Foraz, symmetry (or subgroup), the new matri@gsﬂﬁff)ﬂl are also solutions of the Cardy
equation, because they too are compatible withithendeed, the compatibility amounts to
checking thak’ andi ¢’ coincide modulo 2, which obviously remains true if signs are inserted.

T The full expansion ofx) involves Ishibashi states from tigetwisted bulk sectors for alj which leavex invariant.
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Moreover, the identity occurs in the diagonal boundary conditions anty,s, for which the
signs cancel out.

In contrast, in the case of&; symmetry, the insertion of sigrg does not yield sensible
solutions (as far as the minimal models are concerned). The reason is that some of the fields
occur with multiplicity two. Since the corresponding entriesifi’ must be real combinations
of two third roots of unity, they can only be 2 e1l. Therefore, changing their sign by inserting
somee,, is not consistent.

Thus when the symmetry group %, there is a vast number of seemingly acceptable
solutions. These various solutions differ by the charges which are assigned to the primary
fields in mixed boundary conditions = 8). The freedom we have in choosing thereflects
the fact that the charge normalization in mixed boundary conditions cannot beafpéati,
unlike what happens for diagonal boundary conditions, in which an identity occurs.

One may try to derive more constraints on the charge normalizations by requiring that the
boundary charge assignments be compatible with: (i) the charge assignments in the bulk, and
(i) the boundary field operator product coefficients.

The first requirement is a condition on the way bulk fields close to a boundary (taken to
bey = 0) expand in boundary fields [13, 14]

¢j(x +iy) ~ Y Y@ BEy) P (x) (6.2)
b.ca k

where the summation anis over all boundary conditions, not just the invariant ones. Zhe
symmetry implies selection rules on the coefficients since a bulk field of a given parity should
expand in a combination of boundary fields that transforms the same way. It means that the
parity of the fieldp* must match that op; for all invariant boundary conditions, such that
@Bk £ 0.

JSince these expansions involve fields in diagonal boundary conditions only, the selection
rules that follow are the same no matter what the sigrg afe. This does not prove, however,
that the selection rules are indeed satisfied. For the diagonal motels, the coefficients
@ ij are known explicitly [15], and it would be interesting to check directly that their values
are consistent with the boundary charge assignment found here.

The second check concerns the operator algebra of the boundary fields themselves [13, 14]

¢ ()" () ~ Y P — YT (), (6.3)
k
Restricting oneself to invariant boundary conditianss, y, the discrete symmetry again
implies selection rules which require that the charges given by the matritéprovide a
grading of the boundary fusion algebraft:

(aBy)k (@) (8)J k
CiP #0 = nfgnl) =niE). (6.4)

It is obvious that if the matrix Coefﬁcientﬁg,); satisfy (6.4), the same will be true of

eaeﬂﬁ;’j’}f, so that here too, these matrices are all consistent with the boundary operator product

expansion (6.3), or else none of them is. As the discrete symmetry is expected to occur, one
can be confident in the fact that the selection rules will be satisfied. Below, we give examples
of selection rules in the most explicit case, namely the diagonal models. We have not shown,
in general, that they are indeed satisfied, and as before, a proof which is not based on symmetry
arguments would be valuable.

T We leave aside the cases where some matrix elemgf;itﬁre zero without having the corresponding elements in
n' equal to zero. This happens when primary fields come in pairs of opposite charge.
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In the diagonal model&, A), the boundary conditions are in one-to-one correspondence
with the chiral primary fields through their labelling by two nodesb) taken inA,_; and
Ay_1. As before, the boundary conditios*, b*) = (p —a,q — b) and(a, b) are to be
identified. Without loss of generality, one may thus assume that the first label-{thieel’)
is odd.

The boundary operator product coefficients are known explicitly from [15], where they
were proved to be equal to coefficients of the crossing matrices (in a suitable normalization)

(aBy)k __ oy
e = 7] ©9
Since, for instance, an odd boundary figltf cannot occur in its fusion with itself, the
corresponding crossing coefficient must vanish. The verification that it does is non-trivial
only when the chiral field indeed occurs in its own bulk fusion (named;, # 0), when the
primary fieldi indeed occurs in the diagonal boundary conditimLsa(yé 0 for « invariant

underZ,), and when it is an odd field: g}x" = —1). All three conditions can be easily worked
out, and yield

E“[? ?}:o (6.6)
foralli = (r, s) such that, s are odds = 3 mod 47 < 2p —1)/3,s < (29 —1)/3, and for
alla = (a, q/2) suchthatr +1)/2 < a < p/2.

The simplest example where such constraints arise is the tetracritical IsingMedak),
in which (6.6) implies (in terms of conformal weights)

11 11
15 15| _ 15 15 | _
F[l J—Ffsé[z J—F%.i[

5 15 3 3
More conditions can be derived in a generic diagonal model.
To summarize, the matricé&’ displayedin (4.6) and (4.12) yield but a particular solution

to Cardy’s equation. For 23 symmetry, they form the only consistent solution,

wIN

2

2
3}:& (6.7)
3

wIN

nff;; = fzfygl)g' (g =e (6.8)
whereas, in the case of symmetry, there are many more given by
nff,); = eaeﬂﬁg)ﬁi € = %1 g2 =e) (6.9)

for arbitrary signs. The effect of these signs is to reverse (or to maintain, depending to the
value ofeyeg) the parity of all the fields that occur in the sector of boundary conditiorts

The ambiguity in the normalization of thH&, charges that arises due to these signs must
be resolved on physical grounds. As the interpretation of the boundary fields is lacking in the
general non-unitary model, it is not clear to the author what the correct requirement should
be. In this context, the specific choieg = +1 for all « is a minimal and natural one, as it
extends nicely the corresponding formula foe e, and retains much of the graph theoretic
description. It also has the distinctive feature of producing matiié€s of constant sign,
either totally positive or totally negativet. However, in view of what follows, this may not be
the correct choice.

In a unitary model, the ground state of every sector is expected to be invariant under the
symmetry group, on account of the PF theorem applied to the transfer matrix. This provides a

T There is another solution in terms of matrices of constant sign, which is obtained by substtGtinfpr G in
formula (4.6) givingi®). The substitution has no effect whéf = Ay, since the associated adjacency matrix is the
number zero, while in the other cases, it causes the maftié¥go be multiplied by(—1)°*1. This sign can be seen
to be in the line of the previous discussion, because it is equat o'+ = €qep With €, = (=L if o« = (a, b).
The existence of this solution is a consequence of a non-trivial automorphism of thegffaph
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well-defined criterion to fix the normalization of the charges, and therefore, the physical value
of the signs:,. We will use this criterion as a guide, in order to see if a particular set of values
€, emerges from this point of view.

7. Unitary models

In this last section, we explore the possibility of fixing the value of the séigrtsy using the
criterion we have just mentioned: if the continuum limit is smooth enough, it is expected that
the consequences of the PF theorem on the finite-dimensional transfer matrix be maintained in
the corresponding conformal field theory. In particular, for all invariant boundary conditions,
the ground state of the Hamiltonid#), s (the primary field of lowest conformal dimension in
He,p) should be non-degenerate and (hence) invariant under the symmetry group. In short,
we will call this the PF criterion. As already said, it is automatically satisfied in the diagonal
boundary conditions.

Thus we look for a set of, such that theZ, charge assignment meet the PF criterion.
Incidentally, when the symmetry group4s, there is only one consistent charge assignment
(see the previous section). In that case, we will merely check whether the PF criterion is
satisfied.

The outcome of this investigation is somewhat surprising. The unitary diagonal models
are the only ones where the PF criterion can be met, for a unique choége bf all other
unitary models, there is no way in which it can be fulfilled, if one insists that it be valid in all
sectors. A physical interpretation of this will be proposedt. Nonetheless, for all those models
but two, we will see that a unique setgf is singled out by demanding a minimal violation
of the PF criterion.

We recall that the conformal weight of a primary field labelled by (r, s) is equal to

w o ar=p9*= (-9
r,s 4pq
Throughout this section, we will takeodd andy = p £ 1 even. Then the smallest conformal
weights correspond, in ascending order; te (1, 1), (2, 2), (3,3), ....

(7.1)

7.1. The unitary seriesA(, A)

The only boundary primary fields that occur in the diagonal models havestiairel odd

(see (5.7)). Since the identitg, 1) does not appear in mixed boundary conditions, the primary
with the lowest weight that can possibly occur in mixed boundary conditions corresponds to
(3, 3), and consequently, the off-diagonal entries of

ngfg(sa) = ”Eii.(‘z)s,)(az,g) = —€q€q, UZ(T%)HLGZ (72)
must be positive. The off-diagonal matrix coefficiebts(T'),, ., equal one ifla; — az| = 2
orif {ay, a2} = {(p — 3)/2, (p — 1)/2}, and zero otherwise (it counts the number of paths of
length 2 going frona; toa, on the grapif,_1),2). Thus one obtains the conditiefe,, = —1
for all these pairs. This fixes the vectgrin a unique way (up to a global sign that does not
matter) as

€o= (.o +1,+1, —1, —1, +1 +1, -1, —1, +1). (7.3)

For these specific signs, one may then verify that in the remaining mixed boundary sectors
(those for which (3,3) does not occur), the field of lowest weight indeed has a parity +1 (zero

T I'am indebted to Gerard Watts for a clarifying discussion about this issue.
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charge). To do that, one can first observe that any mixed boundary sector has its field of lowest
weightin{(r, s) : 3< r = s odd < p — 2}. The next point is to note thaf, _1(T),, ., IS zero

unless the nodes, a, can be related by a path of length- 1. If the two nodes cannot be
connected by a shorter path, it follows from (7.3) that,, = (—1)"~1/2, so that the numbers

n(g)(r,r) _ Galeaz(_1)(rfl)/2Ur71(T)a1,a2 (7.4)

(a1,%).(a2,%)
are positive (or zero). The fact that anda, can be connected by a shorter path means that
the field(r, r) is not the primary with the lowest weight in that sector, and we are back to the
first case.

Since the PF criterion can be satisfied in all sectors for a unique sgftaé tempting to
conjecture that these are the correct physical values. The charge content in the various sectors
of the unitary diagonal models would then be given by

i

~(9)i
n = n q
(@1,9),(a2,4) = €€l gy 9) (%)

with the signs (7.3), and th&® as in (5.7).

(7.5)

7.2. The unitary serieéA, D)

The same calculations can be carried out for the unitary models afath®) series, with,
however, different results. To illustrate it most clearly, we will start with the simplest case,
namely(Ag4, Dg4), corresponding to the critical three-Potts modek 5, g = 6).
A set of Z,-symmetric boundary conditions is providedt by the so-called A, BC, Free and
New [6]. They correspond, respectively, to the nodkdl), (2, 1), (1, 2) and(2, 2). (Free
and New, being fully invariant undess, must correspond tb = 2, which is the only node of
D, invariant undeiSs.) Together they define ten different sectors.
It is not difficult to find the field with lowest weight in each of these sectors, and then
compute the parity they are assigned by the matri€&’scomputed in section 5. Writing these
in a matrixM, one obtains (indices are A, BC, Free, New)
+1 -1 +1 -1
~ i mi i — + — —
o = ™ i b= = | 3 3G
-1 -1 0 +1
The zeros are due to the partition function (superscripts are the conformal weights)

1/15 2/5 7/5
ZFreeNew = 2X3,/3 + X3,/5 + X3,/1 (7-7)

which shows that the ground state in that sector is doubly degenerate, the two states having
opposite parities.

The above matrix makes it clear that the charge assignment impligébgioes not satisfy
the PF criterion in all sectors, either because the ground state is not invariant, or because it
is degenerate. One may try to find valuesdpthat render the non-degenerate ground states
invariant, but one easily sees that it is not possible: no values,faan be found so that
M, > 0foralla, 8.

One can relax our demands by looking for a set¢pfvhich minimizes the number of
sectors that violate the PF criterion. One then finds that the minimal number of such sectors,
which we call non-PF, is equal to

Noorpr = 2. (7.8)

T The model has eight conformally invariant boundary conditions which are invariant uagebat not under the
sameZ,. One finds three groups of four boundary conditions that are simultaneously invariant under th&,same
They clearly correspond to the three conjugagesubgroups ob3, the automorphism group dds.

(7.6)
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This number is realized for, = (+1, -1, +1, —1) = (+1, —-1), ® (1, 1), the two non-PF
sectors being BC, New and Free, New. Indeed, for thgsene obtains

+1 +1 +1 +1
+1 +1 +1 -1
+1 +1 +1 O
+1 -1 0 +1

GaéﬂMmﬁ = (79)

Let us also notice that if one excludes just one boundary condition, namely ‘New’, the expected
consequences of the PF theorem are indeed verified. Thus in this case, the minimal number of
boundary conditions that have to be excluded for this to be true is equal to 1.

Finally, one may note that, = (+1, —1, +1, +1) share the same properties, the two
non-PF sectors now being A, New and Free, New.

In any case, one must conclude that the transfer matrix, in certain sectors of boundary
conditions, does not satisfy the conditions of the PF theorem. There can be only two reasons for
this: either the transfer matrix is not irreduciblet, or else it contains negative entries, implying
that some of the boundary Boltzmann weights are negative (or both).

That the first condition fails is unlikely because the periodic transfer matrix is irreducible
and because the boundary conditions are undecomposable. So one should favour the second
alternative, which points to the unphysical nature of some of the boundary conditions, their
classical description requiring negative Boltzmann weights. We note that a boundary condition
« which is described by negative Boltzmann weights does not necessarily lead to unphysical
(negative, non-PF) partition functions. Whether or not this is the case depends on which other
boundary condition is associated with

The appearance of negative classical boundary Boltzmann weights to describe the New
boundary condition in the critical three-Potts model has been discussed in [6], and is confirmed
by the explicit calculation of the critical boundary weights [17].

As we shall see, what is true in the three-Potts model is true in all unitary models of the
(A, D) series. No values for the, exist which make all sectors satisfy the PF criterion, but
a suitable choice, unique, contrary to the above case, ofinimizes the number of sectors
which do not satisfy it. Asabove, we will take the point of view that these features are the signal
that a certain number of boundary conditions are unphysical, because they require negative
Boltzmann weights for their classical description.

We have not carried out the analysis of the whole series, but instead we have investigated
the first eight models, up tp = 13 andg = 12, with the following results.

In each of these models, we have determined the minimal nuiifgkys of boundary
conditions that must be disregarded in order to satisfy the PF criterion in all the sectors involving
the remaining ones. This uniquely singles out a set of boundary conditions, which naturally
qualifies as the set of unphysical boundary conditions. This also determines unique values of
thee, for the physical ones. The values&f for the unphysicalr are then fixed (uniquely,
except in the three-Potts model) by requiring a minimal number of non-PF sectors (which
necessarily correspond to one or two unphysical boundary conditions). That minimal number
is denoted byyor-pr- The results are as follows.

In the model(A,_1, D,2+1) (we have looked at the eight models corresponding to
6 < ¢ < 12), the numbe®Vynpnys Only depends on the rank of the factor. It increases
rather quickly since itis equal to 1, 3, 6 and 10 for the two models involving the aldehra
Ds, Dg and D+, respectively. We found that the unphysical boundary conditions form the set

T The unicity of the largest eigenvalue is only guaranteed for non-negative primitive matrices [16]. Under mild
assumptions on the transfer matrix, its irreducibility is sufficient.
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(the labelling of the nodes is as in the figure of section 3)
p+3

> )

Moreover, the signs which make the number of non-PF sectors minimal are unique and given

by

{a:(a,b)ETp; XAy 1iatb> (7.10)

€q = (+1’ _17 +lv _ly . -)a 02y (19 1’ ls .. ')b
= (=1 o = (a, b). (7.11)

As pointed out above, in the modeld 4, D4), there is another solution, = (+1, —1, +1, +1),
which, however, appears to contradict the duality relations (see below).

We have determined/,o-pr by mere counting, and found that it equals 2, 3, 11, 15,
36, 46, 89, 109 for the first eight models, ordered 4% D,), (As, Ds), (Ae, Ds), .... (By
symmetry, the sector®, ) and(B, @) are identical and count for one.)

These results strongly suggest the general pattern for the wAolB) series, in which
the number of unphysical boundary conditions in (7.10) equals a binomial coefficient

-1
NunphyiA, D%+1) = <2 2 ) (7.12)

This is a large number since essentially half the invariant boundary conditions would have to
be discarded as classically unphysical. Some more numerology also shows that the number of
non-PF sectors fits the simple formula

7 192 (7.13)

4

Nnowpr(Ags1-1, Dg41) = {(q 2) } L14-2@F2(@¢ -9
where{x} is the integer closest ta. The two numbers in the rhs of the previous equation have,
separately, a well-defined meaning: the first one is the number of sectors where the ground
state is non-degenerate but odd undeizheymmetry, while the second one gives the number
of sectors where the ground state is doubly degenerate.

The reader may wish to check the above assertions in a less simple instance than the Potts
model. A good example is to consider thé&s, Ds) model, for which one computes (in the

tensor product basis)

+1 -1 +1 +1 -1 +1 +1 -1 +1
-1 +1 -1 -1 +1 -1 -1 +1 +1
+1 -1 +1 +1 -1 -1 +1 +1 +1
+1 -1 +1 +1 -1 +1 +1 -1 O
Myp=]-1 +#1 -1 -1 +1 +1 -1 0 -1]. (7.14)
+1 -1 -1 +1 +1 +1 0 -1 -1
+1 -1 +41 +1 -1 0 +1 O 0
-1 +1 +1 -1 0 -1 0 +1 O
+1 +1 +1 0 -1 -1 O 0 +1

The values o€, mentioned in (7.11) are nothing but the first liné\dif 4, and the boundary
conditions to discard label the rows and columns 6, 8 and 9, which correspond, in terms of
the fixed-point graptl; x As, to the pairs of nodeg:, b) = (3, 2), (2, 3) and(3, 3), as given
by (7.10). There are six zeros in the upper triangular paﬂf[gg, which is the value of the
second summand of (7.13).

All this leads to the reasonable guess that (7.11) might give the correct physical values
of thee,. Inserted in (6.9), it not only determines the parities of all primaries in the sectors
where the PF criterion is satisfied, but it also points to the boundary conditions that can
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have a problematic lattice interpretation. These conjectural statements must be confirmed or
dismissed by the explicit calculation of the boundary Boltzmann weights. The results obtained
so far seem to give some support to our conjecture [18].

Assuming this conjecture, it is not difficult to give an explicit formula for the parities.
From (4.6), (4.12) and (7.11), they are determined from

(&) 1
”(ifh),(az,bz) = (—1)a1+u2+r+ Urfl(T(pgl) )al,azUsfl(A%—l)bl,bz- (715)

The matricesU,_1(T(,-1),2) are all positive, unlike thé/,_1(A,/,2—1), which are positive
for s < ¢/2, negative fors > ¢/2, and identically zero fos = ¢/2, on account of
Uj—s—1(Ayj2-1) = —Us_1(Ay2-1).

Putting allthese observations together, one can conclude that the paired fields have opposite
Z, parities within each pair (as already pointed out), and that the parity of an unpaired field in
the sector of boundary conditions g is equal to

o, | (=Dratriged it s <gq/2
g = artartr B .
(=), if s>gq/2.

In the critical three-Potts model for instance, one finds the following frustrated partition
functions (in terms of the conformal weights):

(7.16)

Zhn = X0~ X3 (7.17)
Zp Bc = X2/5 — X7/5 (7.18)
Zf\,Free: X1/8 — X13/8 (7.19)
Zgcpe = X0 — X3 = X2/5+ X7/5 (7.20)
Z8¢ Free = X1/40 — X21/40 (7.21)
Z% eerree= X0 = X3% X2/3 = X2/3* (7.22)
Z§ New = X1/40 — X21/40 (7.23)
ZiewNew = X0 — X3 — X2/5+ X7/5+ X2/3 — X273+ + X1/15 — X1/15"- (7.24)

These functions are computed using &egiven in (7.11), and appear to be consistent
with the duality of the model [6]. For instance, the equality

Zpc.Free = ZA New (7.25)
is maintained for the frustrated partition functions, while

ZrreeFree= ZantZas tZac (7.26)
becomesZ{ .orrce = Z4 A SINCRZZ g = Z - = 0.

The use of the other solutiep = (+1, —1, +1, +1) has the effect of multiplying by-1 the
partition functions of all sectors with one ‘New’, so ttgf \,, would be minus the expression
in (7.23), contradicting the duality relation (7.25).

There is aZ3 symmetry in two models only, namely the critical and tricritical three-Potts
models(A4, D4) and(Ag, D4). They possess, respectively two (‘Free’ and ‘New’) and three
invariant boundary conditions, namely= (a, 2) for a a node off, and7s. The relevant
matrices are equal to

} 1 1 +1 +1 -1
Myp = (_1 +1) and (+1 +1 —1) (7.27)
-1 -1 +1

where a—1 sign indicates that the corresponding sector has two degenerate ground states, of
opposite and non-zero charge (none of them is invariant undefsthe
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Inthe first case (thed4, D4) model), itis the second boundary conditi@2) (i.e. ‘New’)
that appears to be unphysical, while in the second case, it is the third boundary condition
(3, 2). This should not be surprising since they are precisely the boundary conditions which
were unphysical from th&, point of view: from (7.10)x = (a, 2) was to be discarded if
a+2>(p+3)/2,thatis, ifa = (p — 1)/2. Therefore, the boundary conditions which were
causing problems for th&, charges also cause problems for #hecharges.

7.3. The unitary model&d, Eg)

We will content ourselves with making a few comments on the two unitary maodets E¢)
and(Aip, Eg) (p =11 or 13, angy = 12).

As we have said above, the models involving thg algebra have the peculiarity of
possessing primary fields that occur with multiplicity 1, 2 and 3. It turns out that the same is
true of the ground state in various sectors. Let us examine, in some detail, the simplest model
(A10, Ee).

That model possesses ten invariant boundary conditions, labelled=as(a, b) with
a=12,...,5anode ofTs, andb = 3,6 a node of thed, subgraph ofFg, fixed by its
non-trivial automorphism. One can compute, as before, the méyix which collects those

entries ofii.*); for whichi is the lowest weight primary in the secterp. The result is

+1 0 0O +¥ —-1* +1 -1 -1 +1 O
0 +1 +»¥ 0 -1* -1 -1 -1 0 +1
0 +1*  +1 -1 0O -1 -1 0 -1 +1
+1* 0 -1* +1 0O +1 0 -1 +1 -1
~ -1 -1* 0 0 +1 0 +1 +1 -1 -1
Mag=1 41 -1 -1 +1 0 +1 -1 -1 +1 -1 (7.28)
-1 -1 -1 0 +1 -1 +1 +1 -1 -1
-1 -1 O -1 +1 -1 +1 +1 -1 -1
+1 o -1 +1 -1 +1 -1 -1 +1 -1
0 +1 +1 -1 -1 -1 -1 -1 -1 +1
where the stars mean that the ground state in the corresponding sector is three times degenerate,
the numbetet1 being the sum of the three parities. As before, a zero indicates that there are
two degenerate ground states with opposite parity.
We can repeat what we did for tiig, D) series, and look for a set ef which minimizes
the violation of the PF criterion.
By varying thee,, one finds that the minimal number of non-PF sectors is equal to 21,
and that the non-PF sectors have at least one boundary condition in the set
{(2,3),(3,3),(4,3),(5,3),(5,6)} (7.29)
in terms of the nodes dfs x A, (they correspond to the rows and columns 2-5, 10). So these
five boundary conditions can presumably be called unphysical in the sense of the previous
section. Hence
NunphyiAlo, Eg) =5 Nnonpr(A10, Eg) = 21 (7-30)
There are four solutions for the for which these values can be realized. Among them,
the most symmetrical oneég = (+1, -1, -1, +1, -1 ® (1, 1).
The other mode{A 12, Eg) is similar. One finds
NunphydA12, Eg) =5 Nnonpe(A12, Eg) = 27. (7.31)
The presumably unphysical boundary conditions correspond to the (@ds(4, 3), (5, 3),
(6, 3), (6, 6) of Ts x A,. The signs for which these numbers are reached are unique and given
bye, = (+1, —1,+1,+1, -1, +1) ® (1, 1).
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